Extensions 1→N→G→Q→1 with N=C23 and Q=C2xC10

Direct product G=NxQ with N=C23 and Q=C2xC10
dρLabelID
C24xC10160C2^4xC10160,238

Semidirect products G=N:Q with N=C23 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C23:1(C2xC10) = C5xC22wrC2φ: C2xC10/C5C22 ⊆ Aut C2340C2^3:1(C2xC10)160,181
C23:2(C2xC10) = C5x2+ 1+4φ: C2xC10/C5C22 ⊆ Aut C23404C2^3:2(C2xC10)160,232
C23:3(C2xC10) = D4xC2xC10φ: C2xC10/C10C2 ⊆ Aut C2380C2^3:3(C2xC10)160,229

Non-split extensions G=N.Q with N=C23 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
C23.1(C2xC10) = C5xC23:C4φ: C2xC10/C5C22 ⊆ Aut C23404C2^3.1(C2xC10)160,49
C23.2(C2xC10) = C5xC4.4D4φ: C2xC10/C5C22 ⊆ Aut C2380C2^3.2(C2xC10)160,185
C23.3(C2xC10) = C5xC42:2C2φ: C2xC10/C5C22 ⊆ Aut C2380C2^3.3(C2xC10)160,187
C23.4(C2xC10) = C5xC4:1D4φ: C2xC10/C5C22 ⊆ Aut C2380C2^3.4(C2xC10)160,188
C23.5(C2xC10) = C10xC22:C4φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.5(C2xC10)160,176
C23.6(C2xC10) = C5xC42:C2φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.6(C2xC10)160,178
C23.7(C2xC10) = D4xC20φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.7(C2xC10)160,179
C23.8(C2xC10) = C5xC4:D4φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.8(C2xC10)160,182
C23.9(C2xC10) = C5xC22:Q8φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.9(C2xC10)160,183
C23.10(C2xC10) = C5xC22.D4φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.10(C2xC10)160,184
C23.11(C2xC10) = C10xC4oD4φ: C2xC10/C10C2 ⊆ Aut C2380C2^3.11(C2xC10)160,231
C23.12(C2xC10) = C5xC2.C42central extension (φ=1)160C2^3.12(C2xC10)160,45
C23.13(C2xC10) = C10xC4:C4central extension (φ=1)160C2^3.13(C2xC10)160,177
C23.14(C2xC10) = Q8xC2xC10central extension (φ=1)160C2^3.14(C2xC10)160,230

׿
x
:
Z
F
o
wr
Q
<